1   /*
2    * Copyright (c) 2003, Oracle and/or its affiliates. All rights reserved.
3    * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4    *
5    * This code is free software; you can redistribute it and/or modify it
6    * under the terms of the GNU General Public License version 2 only, as
7    * published by the Free Software Foundation.
8    *
9    * This code is distributed in the hope that it will be useful, but WITHOUT
10   * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12   * version 2 for more details (a copy is included in the LICENSE file that
13   * accompanied this code).
14   *
15   * You should have received a copy of the GNU General Public License version
16   * 2 along with this work; if not, write to the Free Software Foundation,
17   * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18   *
19   * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20   * or visit www.oracle.com if you need additional information or have any
21   * questions.
22   */
23  
24  /*
25   * @test
26   * @bug 4826774
27   * @summary Numerical tests for hexadecimal inputs to parseDouble, parseFloat
28   * @author Joseph D. Darcy
29   */
30  
31  
32  import java.util.regex.*;
33  import sun.misc.FpUtils;
34  import sun.misc.DoubleConsts;
35  
36  public class ParseHexFloatingPoint {
37      private ParseHexFloatingPoint(){}
38  
39      public static final double infinityD = Double.POSITIVE_INFINITY;
40      public static final double NaND = Double.NaN;
41  
42      static int test(String testName, String input,
43                      double result, double expected) {
44          int failures =0;
45  
46          if (Double.compare(result, expected) != 0 ) {
47              System.err.println("Failure for " + testName +
48                                 ": For input " + input +
49                                 " expected " + expected +
50                                 " got " + result + ".");
51          }
52  
53          return failures;
54      }
55  
56      static int testCase(String input, double expected) {
57          int failures =0;
58  
59  
60          // Try different combination of letter components
61          input = input.toLowerCase(java.util.Locale.US);
62  
63          String [] suffices = {"", "f", "F", "d", "D"};
64          String [] signs = {"", "-", "+"};
65  
66          for(int i = 0; i < 2; i++) {
67              String s1 = input;
68              if(i == 1)
69                  s1 = s1.replace('x', 'X');
70  
71              for(int j = 0; j < 2; j++) {
72                  String s2 = s1;
73                  if(j == 1)
74                      s2 = s2.replace('p', 'P');
75  
76                  for(int k = 0; k < 2; k++) {
77                      String s3 = s2;
78                      if(k == 1)
79                          s3 = upperCaseHex(s3);
80  
81  
82                      for(int m = 0; m < suffices.length; m++) {
83                          String s4 = s3 + suffices[m];
84  
85  
86                          for(int n = 0; n < signs.length; n++) {
87                              String s5 = signs[n] + s4;
88  
89                              double result = Double.parseDouble(s5);
90                              failures += test("Double.parseDouble",
91                                               s5, result, (signs[n].equals("-") ?
92                                                            -expected:
93                                                            expected));
94                          }
95                      }
96                  }
97              }
98          }
99  
100         return failures;
101     }
102 
103     static String upperCaseHex(String s) {
104         return s.replace('a', 'A').replace('b', 'B').replace('c', 'C').
105                  replace('d', 'D').replace('e','E').replace('f', 'F');
106     }
107 
108     /*
109      * Test easy and tricky double rounding cases.
110      */
111     static int doubleTests() {
112 
113         /*
114          * A String, double pair
115          */
116         class PairSD {
117             public String s;
118             public double d;
119             PairSD(String s, double d) {
120                 this.s = s;
121                 this.d = d;
122             }
123         }
124         int failures = 0;
125 
126 
127 
128         // Hex strings that convert to three; test basic functionality
129         // of significand and exponent shift adjusts along with the
130         // no-op of adding leading zeros.  These cases don't exercise
131         // the rounding code.
132         String leadingZeros = "0x0000000000000000000";
133         String [] threeTests = {
134             "0x.003p12",
135             "0x.006p11",
136             "0x.00cp10",
137             "0x.018p9",
138 
139             "0x.3p4",
140             "0x.6p3",
141             "0x.cp2",
142             "0x1.8p1",
143 
144             "0x3p0",
145             "0x6.0p-1",
146             "0xc.0p-2",
147             "0x18.0p-3",
148 
149             "0x3000000p-24",
150             "0x3.0p0",
151             "0x3.000000p0",
152         };
153         for(int i=0; i < threeTests.length; i++) {
154             String input = threeTests[i];
155             failures += testCase(input, 3.0);
156 
157             input.replaceFirst("^0x", leadingZeros);
158             failures += testCase(input, 3.0);
159         }
160 
161         long bigExponents [] = {
162             2*DoubleConsts.MAX_EXPONENT,
163             2*DoubleConsts.MIN_EXPONENT,
164 
165             (long)Integer.MAX_VALUE-1,
166             (long)Integer.MAX_VALUE,
167             (long)Integer.MAX_VALUE+1,
168 
169             (long)Integer.MIN_VALUE-1,
170             (long)Integer.MIN_VALUE,
171             (long)Integer.MIN_VALUE+1,
172 
173             Long.MAX_VALUE-1,
174             Long.MAX_VALUE,
175 
176             Long.MIN_VALUE+1,
177             Long.MIN_VALUE,
178         };
179 
180         // Test zero significand with large exponents.
181         for(int i = 0; i < bigExponents.length; i++) {
182             failures += testCase("0x0.0p"+Long.toString(bigExponents[i]) , 0.0);
183         }
184 
185         // Test nonzero significand with large exponents.
186         for(int i = 0; i < bigExponents.length; i++) {
187             long exponent = bigExponents[i];
188             failures += testCase("0x10000.0p"+Long.toString(exponent) ,
189                                  (exponent <0?0.0:infinityD));
190         }
191 
192         // Test significands with different lengths and bit patterns.
193         {
194             long signif = 0;
195                 for(int i = 1; i <= 0xe; i++) {
196                     signif = (signif <<4) | (long)i;
197                     failures += testCase("0x"+Long.toHexString(signif)+"p0", signif);
198                 }
199         }
200 
201         PairSD [] testCases = {
202             new PairSD("0x0.0p0",               0.0/16.0),
203             new PairSD("0x0.1p0",               1.0/16.0),
204             new PairSD("0x0.2p0",               2.0/16.0),
205             new PairSD("0x0.3p0",               3.0/16.0),
206             new PairSD("0x0.4p0",               4.0/16.0),
207             new PairSD("0x0.5p0",               5.0/16.0),
208             new PairSD("0x0.6p0",               6.0/16.0),
209             new PairSD("0x0.7p0",               7.0/16.0),
210             new PairSD("0x0.8p0",               8.0/16.0),
211             new PairSD("0x0.9p0",               9.0/16.0),
212             new PairSD("0x0.ap0",               10.0/16.0),
213             new PairSD("0x0.bp0",               11.0/16.0),
214             new PairSD("0x0.cp0",               12.0/16.0),
215             new PairSD("0x0.dp0",               13.0/16.0),
216             new PairSD("0x0.ep0",               14.0/16.0),
217             new PairSD("0x0.fp0",               15.0/16.0),
218 
219             // Half-way case between zero and MIN_VALUE rounds down to
220             // zero
221             new PairSD("0x1.0p-1075",           0.0),
222 
223             // Slighly more than half-way case between zero and
224             // MIN_VALUES rounds up to zero.
225             new PairSD("0x1.1p-1075",                   Double.MIN_VALUE),
226             new PairSD("0x1.000000000001p-1075",        Double.MIN_VALUE),
227             new PairSD("0x1.000000000000001p-1075",     Double.MIN_VALUE),
228 
229             // More subnormal rounding tests
230             new PairSD("0x0.fffffffffffff7fffffp-1022", FpUtils.nextDown(DoubleConsts.MIN_NORMAL)),
231             new PairSD("0x0.fffffffffffff8p-1022",      DoubleConsts.MIN_NORMAL),
232             new PairSD("0x0.fffffffffffff800000001p-1022",DoubleConsts.MIN_NORMAL),
233             new PairSD("0x0.fffffffffffff80000000000000001p-1022",DoubleConsts.MIN_NORMAL),
234             new PairSD("0x1.0p-1022",                   DoubleConsts.MIN_NORMAL),
235 
236 
237             // Large value and overflow rounding tests
238             new PairSD("0x1.fffffffffffffp1023",        Double.MAX_VALUE),
239             new PairSD("0x1.fffffffffffff0000000p1023", Double.MAX_VALUE),
240             new PairSD("0x1.fffffffffffff4p1023",       Double.MAX_VALUE),
241             new PairSD("0x1.fffffffffffff7fffffp1023",  Double.MAX_VALUE),
242             new PairSD("0x1.fffffffffffff8p1023",       infinityD),
243             new PairSD("0x1.fffffffffffff8000001p1023", infinityD),
244 
245             new PairSD("0x1.ffffffffffffep1023",        FpUtils.nextDown(Double.MAX_VALUE)),
246             new PairSD("0x1.ffffffffffffe0000p1023",    FpUtils.nextDown(Double.MAX_VALUE)),
247             new PairSD("0x1.ffffffffffffe8p1023",       FpUtils.nextDown(Double.MAX_VALUE)),
248             new PairSD("0x1.ffffffffffffe7p1023",       FpUtils.nextDown(Double.MAX_VALUE)),
249             new PairSD("0x1.ffffffffffffeffffffp1023",  Double.MAX_VALUE),
250             new PairSD("0x1.ffffffffffffe8000001p1023", Double.MAX_VALUE),
251         };
252 
253         for (int i = 0; i < testCases.length; i++) {
254             failures += testCase(testCases[i].s,testCases[i].d);
255         }
256 
257         failures += significandAlignmentTests();
258 
259         {
260             java.util.Random rand = new java.util.Random();
261             // Consistency check; double => hexadecimal => double
262             // preserves the original value.
263             for(int i = 0; i < 1000; i++) {
264                 double d = rand.nextDouble();
265                 failures += testCase(Double.toHexString(d), d);
266             }
267         }
268 
269         return failures;
270     }
271 
272     /*
273      * Verify rounding works the same regardless of how the
274      * significand is aligned on input.  A useful extension could be
275      * to have this sort of test for strings near the overflow
276      * threshold.
277      */
278     static int significandAlignmentTests() {
279         int failures = 0;
280                 // baseSignif * 2^baseExp = nextDown(2.0)
281         long [] baseSignifs = {
282             0x1ffffffffffffe00L,
283             0x1fffffffffffff00L
284         };
285 
286         double [] answers = {
287             FpUtils.nextDown(FpUtils.nextDown(2.0)),
288             FpUtils.nextDown(2.0),
289             2.0
290         };
291 
292         int baseExp = -60;
293         int count = 0;
294         for(int i = 0; i < 2; i++) {
295             for(long j = 0; j <= 0xfL; j++) {
296                 for(long k = 0; k <= 8; k+= 4) { // k = {0, 4, 8}
297                     long base = baseSignifs[i];
298                     long testValue = base | (j<<4) | k;
299 
300                     int offset = 0;
301                     // Calculate when significand should be incremented
302                     // see table 4.7 in Koren book
303 
304                     if ((base & 0x100L) == 0L ) { // lsb is 0
305                         if ( (j >= 8L) &&         // round is 1
306                              ((j & 0x7L) != 0 || k != 0 ) ) // sticky is 1
307                             offset = 1;
308                     }
309                     else {                        // lsb is 1
310                         if (j >= 8L)              // round is 1
311                             offset = 1;
312                     }
313 
314                     double expected = answers[i+offset];
315 
316                     for(int m = -2; m <= 3; m++) {
317                         count ++;
318 
319                         // Form equal value string and evaluate it
320                         String s = "0x" +
321                             Long.toHexString((m >=0) ?(testValue<<m):(testValue>>(-m))) +
322                             "p" + (baseExp - m);
323 
324                         failures += testCase(s, expected);
325                     }
326                 }
327             }
328         }
329 
330         return failures;
331     }
332 
333 
334     /*
335      * Test tricky float rounding cases.  The code which
336      * reads in a hex string converts the string to a double value.
337      * If a float value is needed, the double value is cast to float.
338      * However, the cast be itself not always guaranteed to return the
339      * right result since:
340      *
341      * 1. hex string => double can discard a sticky bit which would
342      * influence a direct hex string => float conversion.
343      *
344      * 2. hex string => double => float can have a rounding to double
345      * precision which results in a larger float value while a direct
346      * hex string => float conversion would not round up.
347      *
348      * This method includes tests of the latter two possibilities.
349      */
350     static int floatTests(){
351         int failures = 0;
352 
353         /*
354          * A String, float pair
355          */
356         class PairSD {
357             public String s;
358             public float f;
359             PairSD(String s, float f) {
360                 this.s = s;
361                 this.f = f;
362             }
363         }
364 
365         String [][] roundingTestCases = {
366             // Target float value       hard rouding version
367 
368             {"0x1.000000p0",    "0x1.0000000000001p0"},
369 
370             // Try some values that should round up to nextUp(1.0f)
371             {"0x1.000002p0",    "0x1.0000010000001p0"},
372             {"0x1.000002p0",    "0x1.00000100000008p0"},
373             {"0x1.000002p0",    "0x1.0000010000000fp0"},
374             {"0x1.000002p0",    "0x1.00000100000001p0"},
375             {"0x1.000002p0",    "0x1.00000100000000000000000000000000000000001p0"},
376             {"0x1.000002p0",    "0x1.0000010000000fp0"},
377 
378             // Potential double rounding cases
379             {"0x1.000002p0",    "0x1.000002fffffffp0"},
380             {"0x1.000002p0",    "0x1.000002fffffff8p0"},
381             {"0x1.000002p0",    "0x1.000002ffffffffp0"},
382 
383             {"0x1.000002p0",    "0x1.000002ffff0ffp0"},
384             {"0x1.000002p0",    "0x1.000002ffff0ff8p0"},
385             {"0x1.000002p0",    "0x1.000002ffff0fffp0"},
386 
387 
388             {"0x1.000000p0",    "0x1.000000fffffffp0"},
389             {"0x1.000000p0",    "0x1.000000fffffff8p0"},
390             {"0x1.000000p0",    "0x1.000000ffffffffp0"},
391 
392             {"0x1.000000p0",    "0x1.000000ffffffep0"},
393             {"0x1.000000p0",    "0x1.000000ffffffe8p0"},
394             {"0x1.000000p0",    "0x1.000000ffffffefp0"},
395 
396             // Float subnormal cases
397             {"0x0.000002p-126", "0x0.0000010000001p-126"},
398             {"0x0.000002p-126", "0x0.00000100000000000001p-126"},
399 
400             {"0x0.000006p-126", "0x0.0000050000001p-126"},
401             {"0x0.000006p-126", "0x0.00000500000000000001p-126"},
402 
403             {"0x0.0p-149",      "0x0.7ffffffffffffffp-149"},
404             {"0x1.0p-148",      "0x1.3ffffffffffffffp-148"},
405             {"0x1.cp-147",      "0x1.bffffffffffffffp-147"},
406 
407             {"0x1.fffffcp-127", "0x1.fffffdffffffffp-127"},
408         };
409 
410         String [] signs = {"", "-"};
411 
412         for(int i = 0; i < roundingTestCases.length; i++) {
413             for(int j = 0; j < signs.length; j++) {
414                 String expectedIn = signs[j]+roundingTestCases[i][0];
415                 String resultIn   = signs[j]+roundingTestCases[i][1];
416 
417                 float expected =  Float.parseFloat(expectedIn);
418                 float result   =  Float.parseFloat(resultIn);
419 
420                 if( Float.compare(expected, result) != 0) {
421                     failures += 1;
422                     System.err.println("" + (i+1));
423                     System.err.println("Expected = " + Float.toHexString(expected));
424                     System.err.println("Rounded  = " + Float.toHexString(result));
425                     System.err.println("Double   = " + Double.toHexString(Double.parseDouble(resultIn)));
426                     System.err.println("Input    = " + resultIn);
427                     System.err.println("");
428                 }
429             }
430         }
431 
432         return failures;
433     }
434 
435     public static void main(String argv[]) {
436         int failures = 0;
437 
438         failures += doubleTests();
439         failures += floatTests();
440 
441         if (failures != 0) {
442             throw new RuntimeException("" + failures + " failures while " +
443                                        "testing hexadecimal floating-point " +
444                                        "parsing.");
445         }
446     }
447 
448 }